Edge-Dominating Set Problem

نویسنده

  • ROBERT CARR
چکیده

We study the approximability of the weighted edge-dominating set problem. Although even the unweighted case is NP-Complete, in this case a solution of size at most twice the minimum can be efficiently computed due to its close relationship with minimum maximal matching; however, in the weighted case such a nice relationship is not known to exist. In this paper, after showing that weighted edge domination is as hard to approximate as the well studied weighted vertex cover problem, we consider a natural strategy, reducing edge-dominating set to edge cover. Our main result is a simple 2 1 10 -approximation algorithm for the weighted edge-dominating set problem, improving the existing ratio, due to a simple reduction to weighted vertex cover, of 2rW V C , where rW V C is the approximation guarantee of any polynomial-time weighted vertex cover algorithm. The best value of rW V C currently stands at 2 − log log |V | 2 log |V | . Furthermore we establish that the factor of 2 1 10 is tight in the sense that it coincides with the integrality gap incurred by a natural linear programming relaxation of the problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact Algorithms for Annotated Edge Dominating Set in Cubic Graphs

Given a graph G = (V,E) together with a nonnegative integer requirement on vertices r : V → Z+, the annotated edge dominating set problem is to find a minimum set M ⊆ E such that, each edge in E −M is adjacent to some edge in M , and M contains at least r(v) edges incident on each vertex v ∈ V . The annotated edge dominating set problem is a natural extension of the classical edge dominating se...

متن کامل

On the edge geodetic and edge geodetic domination numbers of a graph

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...

متن کامل

New parameterized algorithms for edge dominating set

An edge dominating set of a graph G = (V,E) is a subset M ⊆ E of edges in the graph such that each edge in E −M is incident with at least one edge in M . In an instance of the parameterized edge dominating set problem we are given a graph G = (V,E) and an integer k and we are asked to decide whether G has an edge dominating set of size at most k. In this paper we show that the parameterized edg...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

Capacitated b-Edge Dominating Set and Related Problems

In this paper, we discuss the approximability of the capacitated b-edge dominating set problem, which generalizes the edge dominating set problem by introducing capacities and demands on the edges. We present an approximation algorithm for this problem and show that it achieves a factor of 8/3 for general graphs and a factor of 2 for bipartite graphs. Moreover, we discuss the relationships of t...

متن کامل

Edge 2-rainbow domination number and annihilation number in trees

A edge 2-rainbow dominating function (E2RDF) of a graph G is a ‎function f from the edge set E(G) to the set of all subsets‎ ‎of the set {1,2} such that for any edge.......................

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001